Computer Graphics Course Code: BEG372CO

Year: III

Semester: I

Teaching Schedule Hours/Week			Examination Scheme				
Theory	Tutorial	Practical	Internal		Final		Total
3	2	3	Theory	Practical	Theory	Pratical	150
			20	50	80	-	

Course Objective:

To be familiar with the basic techniques used in computer graphics system

1. Introduction

- 1.1. History of Computer graphics
- 1.2. Application of computer graphics

2. Graphics Hardware

- 2.1. Keyboard, Mouse (mechanical & optical), Light pen, Touch screen, Tablet input hardware, joystick
- 2.2. Raster and Vector display architecture
- 2.3. Architecture of simple non-graphical display terminals
- 2.4. Architecture of graphical display terminals including frame buffer and color manipulation techniques RGB, CMYK
- 2.5. Advanced raster graphic architecture

3. Two-dimensional Algorithms and Transformations

- 3.1. Direct and incremental line drawing algorithms
- 3.2. Bresenham algorithms line drawing for m>1 and m<1 (mid-point circle drawing and mid-point ellipse-drawing algorithms)
- 3.3. Two-dimensional translation, scaling (standard and directive), rotation, reflection, and shear
- 3.4. Recent transform concept and advantages
- 3.5. Windows-to-viewport transformation

4. Windows and Clipping

4.1. Introduction

8 Hours

2 Hours

10 Hours

- 4.2. The viewing transformation
- 4.3. Viewing transformation implementation
- 4.4. Clipping
- 4.5. The Cohen-Sutherland line-clipping algorithm
- 4.6. The Sutherland-Hodgman algorithm(Polygon Clipping)

5. Three-dimensional Graphics

- 5.1. Extension of two-dimensional transforms to three-dimensions
- 5.2. Three-dimensional object to screen viewing projection
- 5.3. Methods of generating non-planar surfaces (Bezier, Spline)
- 5.4. Hidden line and hidden surface removal techniques(Object and Image space method including A buffer)
- 5.5. Specialized and future three-dimensional display architectures

6. Light ,Color and shading

- 6.1. Introduction
- 6.2. Need for shading in engineering data visualization
- 6.3. Algorithms to simulate ambient, diffuse, and specular reflections
- 6.4. Constants, Gouraud, and Phong shading models

7. Graphical Languages

- 7.1. Need for machine independent graphical languages(PHIGS,GKS)
- 7.2. Discussion of available languages and file formats (Graphical file format)

8. Introduction to Animation

8.1. Open GL (Introduction only)

Lab:

- 1. Introductin to graphics primitives and graphics drivers
- 2. Implementation of line Drawing Algorithms.
 - 2.1 DDA
 - 2.2 Breselhem's Algorithm
 - 2.3 Breselhem's general Algorithm
- 3. Implementation of mid point circle Algorithm
- 4. Implementation of mid point ellipse Algorithm
- 5. Implementation of basic 2D and 3D transformation
- 6. Implementation of windows to view port transformation

7 Hours

5 Hours

1 Hour

4 Hours

7. Implementation of line clipping process

References:

- 1. D. Harn and M. P. Baker, "Computer Graphics", PHI Edition
- 2. T. I. James, D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes, "Computer Graphics, Principles, and Practice", PHI Edition

Chapter	Marks
1,2	18
3	18
4	15
5	14
6,7,8	15
Total	80

Marks Distribution