Algorithm Analysis and Design **BEG371CO**

Teaching Schedule Examination Scheme Hours/Week Theory Tutorial Final Total Practical Internal 3 Theory Practical Theory 1 100 --Practical 20 80 -

Course Objective:

After completing this subject, students will be able to explore techniques for designing and analyzing the algorithms.

1.	Introduction 1.1 Algorithm Definition	6 Hours
	1.2 Algorithm Specification	
	1.2.1 Pseudo code Convention	
	1.2.2 Recursive Algorithms	
	1.3 Performance Analysis	
	1.3.1 Space Complexity	
	1.3.2 Time Complexity	
	1.3.3 Asymptotic Notation (O, Ω)	
	1.3.4 Practical Complexities	
	1.3.5 Performance Measurement	
2.	Divide-And- Conquer	10 Hours
	2.1 General Method	
	2.2 Binary Search	
	2.3 Merge Sort, Quick Sort, Selection Sort	
	2.4 Strassen's Matrix Multiplication	
	2.5 Convex Hull	
3.	Greedy Method	6 Hours
	3.1 The General Method	
	3.2 Knapsack Problem	
	3.3 Job Sequencing with Deadlines	
	3.4 Minimum Cost spanning Trees	
	3.4.1 Prim's Algorithm	
	3.4.2 Kruskal's Algorithm	
	3.5 Dijkstra's Algorithm	
4.	Dynamic Programming	6 Hours
	4.1 The General Method	
	4.2 Multistage Graph	

Year: III

Semester: I

	4.3 All Pairs Shortest Path4.4 0/1 Knapsack4.5 The Travelling Salesperson Problem	
5.	Backtracking	6 Hours
	5.1 General Strategy	
	5.2 8-Queens Problem	
	5.3 Kanpsack Problem	
	5.4 Graph Coloring	
	5.5 Hamiltonian Cycles	
6.	Branch and Bound 6.1 General Strategy 6.2 0/1 Knapsack 6.3 Travelling Salesperson Problem	6 Hours
7.	Np-Hard and Np-Complete Problems 7.1 Basic Concepts 7.2 Np-Hard Graph Problems	5 Hours

References

- 1. Horowitz, Sahani and Rajasekaran "Fundamentals of Computer Algorithms", Galgotia Publication.
- 2. Bressard, "Fundamental of Algorithm.", PHI

Marks Distribution

Chapter	Marks
1	10
2	20
3	10
4	10
5	10
6	10
7	10
Total	80