Numerical Method BEG370C0

Year: III Semester: I										
Teaching Schedule Hours/Week			Examination Scheme							
Theory	Tutorial	Practical	Internal		Final		Total			
3	1	3	Theory	Practical	Theory	Practical	150			
			80	-	20	50				

Course Objective:

To solve the engineering problems by using the theory of numerical Computational procedures

1.	Introduction	4 Hours	
	1.1. Numerical computing process		
	1.2. New trends in Numerical Computing		
	1.3. Application in Numerical Computing		
	1.4. Taxonomy of errors in numerical method		
	1.5. Absolute Relative & percentage errors		
2.	Solution of non – Linear equation	7 hours	
	2.1. Iterative methods and stopping criteria		
	2.2. Bisection method & its Convergence		
	2.3. Horner's method		
	2.4. Newton- Raphson method and its convergence		
	2.5. Secant method and its convergence		
	2.6. Evaluation of polynomials using Horner's Rule		
3.	Curve Fitting	8 Hours	
	3.1 Interpolation		
	3.1.1 Linear interpolation		
	3.1.2 Lagrange interpolation		
	3.1.3 Newton interpolation		
	3.1.4 Newton Divided Different interpolation		
	3.1.5 Spine interpolation: cubic spines		
	3.1.6 Control Interpolation (Gauss Forward/ Backward Formulae)		
	3.2. Regression		
	3.2.1 Least squares Regression		
	3.2.2 Fitting Transcendental Equations.		
	3.2.3 Fitting a polynomial function		

4. Numerical Different & integration

- 4.1 Differentiating continuous functio
 - 4.1.1 Forward Difference Quotient
 - 4.1.2 Backward Difference Quotient
 - 4.1.3 Central Difference quotient
- 4.2 Newton cotes methods of integration
 - 4.2.1 Trapezoidal rule and composite trapezoidal rule
 - 4.2.2 Simpson's 1/3 rule & its composite
 - 4.2.3 Simpson's 3/8 rule.
 - 4.2.4 Boole 's Rule
- 4.3 Romberg integration
- 4.4 Gaussian integration

5. Linear Algebraic Equations

- 5.1 Elimination Approach
 - 5.1.1 Basic Gauss Elimination
 - 5.1.2 Gauss Elimination with partial pivoting
 - 5.1.3 Gauss Jordon method
 - 5.1.4 LU decomposition methods
 - 5.1.4.1 Do Little Algorithm
 - 5.1.4.2 Crout Algorithm
 - 5.1.5 Matrix Inversion Method
 - 5.1.6 Cholesky Method

5.2 Iterative method

- 5.2.1 Iconic method
- 5.2.2 Gauss- seidal method
- 5.2.3 Eigen values and eigen vectors using power method & inverse power method

10 Hours

6.	Solution of ordinary differential equations	6 Hours
	6.1 Euler's method .	
	6.2 Heun's method (predictor – Corrector method)	
	6.3 Fourth order Runge-kutta method	
	6.4 Systems of differential equations using Heun's method	
	6.5 Higher order differential equations using Heun's method	
7.	Solutions of partial differential equations	3 Hours
	7.1 Elliptic equations	
	7.1.1 Poisson's equations	
	7.1.2 Laplace's equations	
	7.2 Parabolic Equations	

7.3 Hyperbolic Equations

Laboratories

- 1. Review of properties of programming language
- 2. Bisection method
- 3. Newton-raphson method
- 4. Secant method & Horner's rule
- 5. Lagrange interpolation
- 6. Linear Regression
- 7. Basic gauss elimination method
- 8. Gauss seidal method
- 9. Matrix inversion method
- 10. Trapezoidal rule
- 11. Simpson's 1/3 rule
- 12. Simpson's 3/8 rule
- 13. Solution of differential equation using Euler's method
- 14. Solution of differential equation using Runge-Kutta method

Final exam question format (80 marks)	3 hours
Group A attempt any six questions (out of 7)	6*10=60
Group B attempt any two questions (out of 3)	2*10=20
(Algorithm & programs)	

References

- 1. E. Balagurusamy "Numencal Methods ' Tatal Mc Graw Hill
- 2. S.Yakwitz and F. szidarouszky '' An Introduction to Numerical Computations "2nd Edition Macmillan Publishing co ', New York .
- 3. W. Cdhency and D kixaid "Numerical Mathematics 4 computing "2nd Editior, Brooks /Cole publishing
- 4. C.F Gerald and P.o. Wheatley "Applied Numerical Analysis "4th Editim Addipon wesley publishing co. New york .
- 5. W. It presss, B p. Flannery et . al "Numerical Recises Inc", 1st Edition, Cambridge press 1988